
Project Report - Group 13
Chan Xu Hui
Poon Chuan An

R Ramana
Wamika Malik

Table of Contents

Project Report - Group 13 1
Overview 2
Bonus 2
TASK 1 2
TASK 2 9
Appendix 13
References 18

1



Overview

In this project, we implemented a neighbor discovery mechanism based on the

“birthday protocol” between sensor tags. Subsequently, in the second part

of the project, we enhanced this neighbor discovery mechanism to establish

a delay-tolerant sensing application. The following sections provide a

detailed description of these components.

Bonus
ENHANCEMENTS DONE - TASK 2

1. One enhancement done includes implementing receiver acknowledgment of

light packets received. Once a receiver receives light packets, it

sends out an ack to the sender. The sender/transmitter waits for the

ACK for a certain timeout after sending the light packets. Since the

light readings are updated and packets are sent every 3s, we have a

timeout of 1s and wait for ack up to 3 times after sending a packet.

2. Another enhancement includes filtering out invalid packets that may

be coming in from other nodes and have a different packet structure.

TASK 1
[1] Using the default settings, observe and record how long the devices

take to discover each other. Pick one of the devices as A and plot the

cumulative distribution of the intervals between packet receptions on

device A hearing from device B.

We ran the given code, nbr.c, for about 5 minutes and printed out the

timings when device A hears from device B. Then, we calculated the

intervals between the timings and plotted them on a cumulative distribution

graph. Sometimes if the timeslots are aligned, two transmitted packets are

received. To plot a more accurate distribution of discovery we removed the

second packet that got transmitted in the same timeslot. This also

presented a more realistic view of the mean and standard deviation (STD) of

the dataset.

The default settings are:

● WAKE_TIME: 100ms (R_TIMER / 10)

● SLEEP_SLOT: 100ms (R_TIMER / 10)

● SLEEP_CYCLE: 9

Duty Cycle = WAKE_TIME/(WAKE_TIME + SLEEP_CYCLE * SLEEP_SLOT) = 1/10 = 0.1

= 10%

2



STD: 4.84s Mean: 5.24s

[2] Reset device B and observe how long it takes for device A to hear from

device B after device B reboots. You may need to modify the given code to

observe this duration. Perform the experiments at least 10 times and plot

the cumulative distribution.

STD: 4.82s Mean: 5.53s

[3] Try out different settings and discuss your observations.

A]

WAKE_TIME = SLEEP_SLOT = RTIMER_SECOND / 20

SLEEP_CYCLE = 5

Duty Cycle = 1/(5+1) = 1/6 = 16.67%

3



STD: 1.00s Mean: 1.11s

B]

WAKE_TIME = RTIMER_SECOND / 10

SLEEP_CYCLE = 9

SLEEP_SLOT = RTIMER_SECOND / 15

Duty Cycle = (1/10)/(1/10 + 9 * 1/15) = 1/7 = 0.1428 = 14.28%

STD: 2.51s Mean: 2.83s

C]

WAKE_TIME = RTIMER_SECOND / 10

SLEEP_CYCLE = 9

SLEEP_SLOT = RTIMER_SECOND / 5

Duty Cycle = (1/10)/(1/10 + 9 * 1/5) = 1/19 = 0.0526 = 5.26%

4



STD: 16.55s Mean: 19.91s

D]

WAKE_TIME = RTIMER_SECOND / 15

SLEEP_CYCLE = 15

SLEEP_SLOT = RTIMER_SECOND / 15

Duty Cycle = (1/15)/(1/15 + 15 * 1/15) = 1/16 = 0.0625 = 6.25%

STD: 9.07s Mean: 10.34s

Increasing the SLEEP_SLOT time by 2 fold (100ms to 200ms), while keeping the

WAKE_TIME at a constant of 100ms and SLEEP_CYCLE at 9, shows an almost 4 fold

increase in mean discovery time of the nodes (5.24s to 19.91s) with the

standard deviation also being more drastic. Additionally, looking at the duty

cycles, it seems to obtain accurate/timely detection. We want the duty cycle to

be about 10%, if we want to minimize power consumption while maintaining a

reasonably quick discovery time. Otherwise, in general, a higher duty cycle

5



will present with a quicker average discovery time and in general the converse

holds true.

[4] Next, please modify the program (nbr.c) so that two-way discovery (A

hears from B AND B hears from A) can be completed in a deterministic manner

within 10 seconds. You should choose settings so that the radio power

consumption is “minimized”.

You must include the following in the report (details instruction below in

the document): a) the algorithm you have implemented b) the parameters

chosen c) the maximum two-way latency observed

a) Chosen Algorithm: Quorum

Implementation:

We used a quorum algorithm which divides the timeslots into a large grid.

Nodes will at (pseudo-)random, decide a row and a column to be awake. Each

grid is TIME_SLOT duration long.

Referring to the image below, adapted from the paper Self-Adapting

Quorum-Based Neighbor Discovery in Wireless Sensor Networks [1], you can

see how the quorum algorithm works for a grid size of 4x4.

Essentially by using random_rand() % GRID_LENGTH, where GRID_LENGTH = 4 in

the above example, each node will choose a row and column at random. In the

example above, node a selected row 1 and column 2 (0-index), while node b

selected row 2 and column 3. The nodes will be awake whenever the time_slot

reaches the greyed squares. Both nodes will be awake at squares 8 and 11 in

the example above. This is deterministic as in the worst case there will

always be 2-time slots (squares) in which both nodes will be awake. To

ensure a deterministic discovery under 10s,

6



TIME_SLOT * GRID_LENGTH
2
<= 10 * RTIMER_SECOND

To ensure the lowest power consumption, we need higher GRID_LENGTH and

lower TIME_SLOT to ensure a lower duty cycle. At the same time, TIME_SLOT *

GRID_LENGTH
2
must be as close to 10s as possible. The parameters chosen can

be found in part b.

Algorithm steps:

1. Set row and column to (pseudo-)random values between 0 and

GRID_LENGTH - 1

2. Set two variables, curr_row and curr_col to 0

3. If curr_row equals row or curr_col equals col GOTO step 4. Else GOTO

step 7.

4. Wake up node and send a packet.

5. Wait for SLOT_TIME.

6. Send a packet.

7. Sleep for SLOT_TIME.

8. If curr_col equals GRID_LENGTH - 1 and curr_row equals GRID_LENGTH - 1

SET curr_col = 0 and curr_row = 0.

9. Else If curr_col equals GRID_LENGTH - 1 SET curr_col = 0 and

curr_row = curr_row + 1.

10. Else SET curr_col = curr_col + 1.

11. GOTO step 3.

Other Attempts:

We decided to do a quorum discovery algorithm after trialing with disco and

being unable to achieve sending under a deterministic time. While we

selected pi and pj, where pi != pj, and set sleep_time for each node to be pi
-1 and pj - 1 respectively, and where TIME_SLOT * pi * pj < 10s, we

occasionally got intervals of ~10.4s. Having a TIME_SLOT * pi * pj < 8s or 9s

works but increases the power consumption as the nodes tend to wake up more

frequently. As such, we decided to try out other deterministic discovery

algorithms that might yield a better outcome, and settled on the quorum

discovery protocol.

b) Parameters:

Best Parameters chosen: SLOT_TIME = RTIMER_SECOND/17 = 588.2ms; and

GRID_LENGTH = 13

Duty Cycle = (13+12)/132 = 25/169 = 0.1479 or 14.79%

7



a) As the slot size reduces and grid length increases, the sensor tags

can discover each other in < 10s for shorter lengths of time. After a

certain point the two devices completely stop discovering each other.

This is likely caused due to drift.

b) We start testing with values of 100 ms slot time and a grid length of

9 and then use different combinations by progressively decreasing the

slot length to lower power consumption.

c) We try out different combinations to come up with the most optimum

value that balances between energy consumption and prevents drift for

the maximum time possible.

d) Best combination for deterministic discovery in < 10s: SLOT_TIME =

RTIMER_SECOND/17 and GRID_LENGTH = 13

e) We ran the algorithm on 2 nodes for 10s and noted down the time of

discovery in each case. Maximum discovery time noted: 9.969s

STD: 2.44s Mean: 3.33s

c) Maximum Two-Way Latency:

Maximum two way latency or two way discovery time observed for a wake up

time of 1/17 = 0.059s is 0.054s.

8



TASK 2

IMPLEMENTATION LOGIC

Transmitter

Receiver

Our SensorTags runs as two state machines, namely main_state, which manages

the overall state of the SensorTag, and nbr_state, representing the state

of the neighbor discovery process.

Both transmitter and receiver are similar in their states, with the

exception of the transmitter having an implicit BROADCAST state while the

receiver has an implicit RECEIVE state.

9



PROXIMITY DETECTION

Proximity detection is done using the RSSI value that is detected during

the neighbor discovery process. For our case, after some experimentation,

we got a range between -75 to -50 RSSI value for a distance of 3m. However,

we found that an RSSI of >= -55 dBm (i.e., values like -50, -47, etc) best

represents distances <= 3m and the drastic difference in value (-75) was an

anomaly. Thus we use this value as our threshold for DETECT and ABSENT.

During the discovery process, the transmitter will always prioritize the

first device it finds for the logging of DETECT and ABSENT events.

Transmitters will not be able to detect other transmitters, while receivers

will not be able to detect other receivers. This is done to prevent

confusion in our discovery process.

RELIABILITY

We implemented an acknowledgement protocol in our system. With every

broadcast of a light packet, the transmitter will wait for the receiver’s

acknowledgement for 1 second. If no acknowledgement is received by the

transmitter, the light packet will be transmitted again, provided that the

transmitter is not in NBR_STATE_DISCOVERY, until an acknowledgement is

received or three broadcast attempts have been made, whichever earlier.

POWER CONSUMPTION

With the implementation of the acknowledgement protocol, for the

transmitter, we are able to turn off the radio immediately when an

acknowledgement is received, reducing any unnecessary broadcasts. As for

the receiver, we are able to turn off the radio immediately upon receiving

the light packet as well.

NEIGHBOUR DISCOVERY

1. Neighbour Discovery Algorithm used: Quorum

2. Parameters:

a. SLOT_TIME = RTIMER_SECOND/10

b. GRID_LENGTH = 12

3. Reasons for choosing quorum: This protocol allows deterministic

discovery and we need to ensure that the nodes discover each other

within a given time slot. In our case we chose our algorithm to have

a maximum discovery time of 14s. This is the value that gives us the

best results while minimizing duty cycle. Since the nodes need to be

discoverable within 3m, 15s after the first within 3m discovery, it

makes sense to have a threshold of 14s for our neighbor discovery as

this would ensure that the node is discovered at least once again

within 15s after the first discovery.

10



4. Duty Cycle = (12+11)/122 = 23/144 = 0.1597 or 15.97%

While higher grid length values (implying lower duty cycle) are possible by

reducing the slot length, we chose not to do so since smaller slot lengths

result in increasing drifts. In our experiments, a duty cycle smaller than

our current implementation of 15.97%, results in unreliable matching of

time slots after about 2-3 minutes. Hence even though reducing power

consumption is a requirement, we wanted to ensure a decent enough

reliability and robustness of our design.

SOME RESULTS

A receiver detects the transmitter within 3m at 2s and prints DETECT

approximately 15s later as seen in the red box below. The light packet is

received approximately 16s after discovery as seen in the green box below.

The receiver receives light packets whenever there is a change in light

readings approximately every 3s as seen below.

Once the receiver leaves the 3m range, it prints ABSENT when it stops

detecting the transmitter within 3m for 30s as seen below.

11



Appendix

Other Parameters tested for Task 1, Part 3

WAKE_TIME = RTIMER_SECOND / 20

SLEEP_CYCLE = 4

SLEEP_SLOT = RTIMER_SECOND / 5

Duty Cycle = (1/20)/(1/20 + 4 * 1/5) = 1/17 = 0.0588 = 5.88%

STD: 8.05s Mean: 9.57s

WAKE_TIME = RTIMER_SECOND / 15

SLEEP_CYCLE = 5

SLEEP_SLOT = RTIMER_SECOND / 15

Duty Cycle = (1/15)/(1/15 + 5 * 1/15) = 1/6 = 0.1667 = 16.67%

STD: 1.32s Mean: 1.58s

12



WAKE_TIME = RTIMER_SECOND / 15

SLEEP_CYCLE = 9

SLEEP_SLOT = RTIMER_SECOND / 15

Duty Cycle = (1/15)/(1/15 + 9 * 1/15) = 1/10 = 0.1 = 10%

STD: 3.54s Mean: 3.81s

WAKE_TIME = RTIMER_SECOND / 20

SLEEP_CYCLE = 5

SLEEP_SLOT = RTIMER_SECOND / 20

Duty Cycle = (1/20)/(1/15 + 5 * 1/20) = 1/6 = 0.1667 = 16.667%

STD: 1.00s Mean: 1.11s

13



WAKE_TIME = RTIMER_SECOND / 20

SLEEP_CYCLE = 9

SLEEP_SLOT = RTIMER_SECOND / 20

Duty Cycle = (1/20)/(1/20 + 9 * 1/20) = 1/10 = 0.1 = 10%

STD: 3.30s Mean: 3.42s

WAKE_TIME = RTIMER_SECOND / 20

SLEEP_CYCLE = 15

SLEEP_SLOT = RTIMER_SECOND / 20

Duty Cycle = (1/20)/(1/20 + 15 * 1/20) = 1/16 = 0.0625 = 6.25%

STD: 9.36s Mean: 7.69s

14



WAKE_TIME = RTIMER_SECOND / 5

SLEEP_CYCLE = 5

SLEEP_SLOT = RTIMER_SECOND / 5

Duty Cycle = (1/5)/(1/5 + 5 * 1/5) = 1/6 = 0.1667 = 16.67%

STD: 2.65s Mean: 3.49s

WAKE_TIME = RTIMER_SECOND / 5

SLEEP_CYCLE = 9

SLEEP_SLOT = RTIMER_SECOND / 5

Duty Cycle = (1/5)/(1/5 + 9 * 1/5) = 1/10 = 0.1 = 10%

STD: 13.28s Mean: 14.59s

15



WAKE_TIME = RTIMER_SECOND / 5

SLEEP_CYCLE = 15

SLEEP_SLOT = RTIMER_SECOND / 5

Duty Cycle = (1/5)/(1/5 + 15 * 1/5) = 1/16 = 0.0625 = 6.25%

STD: 26.49s Mean: 26.35s

16



References

[1] H. Cai and T. Wolf, "Self-Adapting Quorum-Based Neighbor Discovery in

Wireless Sensor Networks," IEEE INFOCOM 2018 - IEEE Conference on Computer

Communications, Honolulu, HI, USA, 2018, pp. 324-332, doi:

10.1109/INFOCOM.2018.8486268.

17


